O KM => type
O 2kf% => type class

< What is a type?
A type is a collection of related values.

For example, in Haskell the basic type Bool, contains two logical

values: True, and False.

< Type Errors / Z5HigEiR
“Applying a function to one or more arguments of the wrong type”
is called a type error.

® [] nrutas — ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2[lib/ghc-9.4.2/lib --interactive — 62x8
ghci> 1 + False

<interactive>:1:1:
e No instance for (Num Bool) arising from the literal ‘1’

e In the first argument of ’(+)’, namely ‘1’
In the expression: 1 + False
In an equation for ‘it’: it = 1 + False
ghci>

O 1 is a number, and False is a logical value
O but + requires two numbers

< Types in Haskell
If evaluating an expression e would produce a value of type T,
then e has type T, written
e :: T
Every well formed expression has a type, which ~can be

automatically calculated at compile time using a process called
type inference.

A1l type errors are found at compile time, which makes programs
safer and faster by removing the need for type checks at run time.

In GHCi, the :type command calculates the type of an expression,

without evaluating it.

[NON] nrutas — ghc-9.4.2 -BJ...

ghci> not False
True
ghci> :type not False

not False :: Bool
ghci>

Basic Types in Haskell

O Bool
B logical values: True | False
B exported by Prelude

O Char

B an enumeration whose values represent Unicode code points
(i.e. characters, see http://www.unicode.org/ for details)

B exported by Prelude

O String
B definition: type String = [Char]
B exported by Prelude

O Int

B fix-precision integer numbers.
B in GHC, the range of Int is [-2763, 2763-1]
B exported by Prelude

O Integer

B arbitrary-precision integer numbers
B exported by Prelude
O Word

B fix-precision unsigned integer numbers
B the same size with Int
B exported by Prelude

O Natural

B arbitrary-precision unsigned integer numbers

m exported by Numeric.Natural (a module in the base package)
O Float

B single-precision floating-point numbers

B exported by Prelude
O Double

B double-precision floating-point numbers

B exported by Prelude

® © @ nrutas—ghc-9.4.2 -BJU...

ghci> sqrt 2 :: Float
1.4142135
ghci> sqrt 2 :: Double

1.4142135623730951
ghci>

< List Types

A 1list is a sequence of values of the same type.

[ON] nrutas — ghc-9.4.2 -B/Users/nrutas/.ghcu...

ghci> :type [False, True, Falsel
[False, True, False] :: [Booll
OINE AR SR8 I I EE s e clE]

['a', 'b', 'c', 'd'] :: [Charl
ghci>

Given a type T:

[T] is the type of of lists with elements of type T

Notes:
O The type of a 1list says nothing about the list’s length.
O The type of the elements is unrestricted.

That is, for any type T, [T] is a type of lists.

For example, we can have lists of lists

[ON] nrutas — ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2/...

ghci>
ghci>
ghci> :type [['a']l, ['b', 'c'], []1]

Flisanl i e e G h ar
ghci>

< Function Types

A function is a mapping from values of one type to values of

another

-- | Boolean \"not\"

not :: Bool -> Bool
not True False

not False True

Given two types X and Y:

X -> Y is the type of functions that map values of X to values
of Y

Notes:
O The argument and result types are unrestricted
For example, functions with multiple arguments or results are
possible using lists or tuples.
add :: (Int, Int) -> Int
add (x,y) = x +y

zeroto :: Int -> [Int]

zeroto n = [0..n]

< Curried functions
Functions with multiple arguments are also possible by returning
functions as results.
add :: (Int, Int) -> Int
add (x, y) = x + vy

add' :: Int -> Int -> Int
add' Xy =x +vy
O add' takes an integer x and returns a function add' x
add' x takes an integer y and returns the result x + vy
O add and add' produce the same final result
but add takes its two arguments at the same time,

whereas add' takes them one at a time

Functions that take their arguments one at a time
are called curried functions,

celebrating the work of Haskell Curry on such functions.

[NON } M= Haskell Brooks Curry - Haskel X + ha

c @& wiki.haskell.org/Haskell_Brooks_Curry d Y O &
Bx Translate
Haskell
Wiki community Haskell B. Curry

Recent changes
Random page

Tools

What links here
Related changes
Special pages
Printable version
Permanent link
Page information
Cite this page

[}

Haskell Brooks Curry was a mathematician who made significant contributions to

logic and computer science.

He was born in 1900 and died in 1982. Today, three programming languages are
named after him, Haskell, Brooks, and Curry, and the composition of functions is
called "currying" in his honor.

Together with the logician Alvin Howard, he developed the idea of "propositions as
types," now known as the Curry-Howard correspondence.

His work also played a critical part in developing the idea that logical systems based
on self-recursive expressions are inconsistent.

Functions with more than two arguments can be curried by returning
nested functions.

mult :: Int -> Int -> Int -> Int

mult X vy z = X *y % z

O mult x :: Int -> Int -> Int

O mult x y :: Int -> Int

O mult xy z :: Int

Why is Currying Useful?
Curried functions are more flexible than functions on tuples.

Useful functions can often be made by partially applying a curried
function.

For example:

O add' 1 :: Int -> Int

O take 5 :: [Int] -> [Int]
O drop 5 :: [Int] -> [Int]

Currying Conventions
The arrow -> associates to the right.

Int -> Int -> Int -> Int === Int -> (Int -> (Int -> Int))
As a consequence, it is then natural for function application to
associate to the left.

mult x y z === ((mult x) y) z

Unless tupling is explicitly required,

all functions in Haskell are normally defined in curried form.

Polymorphic Functions
A function is called polymorphic (“of many forms”)

if its type contains one or more type variables.
length :: [a] -> Int

O For any type a,

length takes a value of type [a], and returns a value of type
Int

Type variables can be instantiated to different types in different

circumstances:

[ON] nrutas — ghc-9.4.2 -B/Users/nrutas/.gh...
ghci>

ghci> length [True, False, Truel
3

ghci> length [0, 1, 1, 2]
4
ghci>

O in length [True, False, True], a is instantiated to Bool

O in 1length [0, 1, 1, 2], a is instantiated to Int

Type variables must begin with a Tlower-case letter, and are
usually named a, b, ¢, etc.

Polymorphic Functions in Prelude : examples
fst :: (a, b) -> a

O Extract the fist component of a pair

snd :: (a, b) -> b

O Extract the second component of a pair
curry :: ((a, b) ->c¢c) ->a ->b ->c

O Convert an uncurried function to a curried function

O Example:
curry fst 1 2 === 1
head :: [a] -> a

O Extract the first element of a list, which must be non-emmpty

O Example:
head [1, 2, 3] === 1
head [1..] === 1

head [] throws an exception: Prelude.head: empty list
last :: [a] -> a
O Extract the last element of a 1list, which must be finite and
non-empty
O Example:
last [1, 2, 3] === 3
last [1..] hangs forever

last [] throws an exception: Prelude.last: empty list

Overloaded Functions

A polymorphic function is called overloaded,

if its type contains one or more type class constraints.

® © @ program—ghc-9.4.2 -B/Users/nr...

:type (+)
tt Num a =>a -> a -> a

O For any type a that is an instance of type class Num,

(+) takes two values of type a and returns a value of type a.

Constrained type variables can be instantiated to any types that
satisfy the constraints:

® © @ program — ghc-9.4.2 -B/Users/nrutas/.ghcup/ghc/9.4.2[lib/ghc-9.4.2[lib --interactive —...
ghci>

ghci> 1 + 2

3

ghci> 1.0 + 2.0

3.0

ghci> 'a' + 'c'

<interactive>:14:5:
e No instance for (Num Char) arising from a use of '+’
e In the expression: 'a' + 'c'
In an equation for ‘it’: it = 'a' + 'c'
ghci>

O The error above is caused by the fact that

the type Char is not an instance of type class Num.

< Type Class
Prelude exports many type classes, for example:
O Eq / Ord / Num

These type classes appear in many types of functions:

® O program — ghc-9.4.2 -B/Users/nrutas/.gh...

:type (==
:: Eg a => a -=> a -> Bool

ttype (<)
t: 0rd a => a => a —> Bool

:type (+)
¢t Num a => a -> a —=> a

< Type Class: Eq

class Eq a where

(==), (/=) :: a -> a -> Bool
X /=y = not (x == vy)
X ==y = not (x /= vy)

The above is the definiton of type class Eq
The Eq class defines equality (==) and inequality (/=)

A1l basic datatypes exported by Prelude are instances of Eq

O O O O

Eq may be derived for any datatype whose constituents are also
instances of Eq.

O The Haskell Report defines no laws for Eq

O However, instances are encouraged to satisfy the following
properties:

B Reflexivity / H&M
X == X === True
m Symmetry / XtFR¢E
X ==y ===y ==X
B Transitivity / stk
IF X ==y & Yy == z === True THEN X == z === True
B Extensionality / #hEtE

IF x ==y === True && f is a function whose return type

is an instance of Eq THEN f x == f y === True
B Negation

X /: y === not (X == y)

O Minimal complete definition: (==) | (/=)
If you want to make a type T an instance of Eq,

you can only provide an implementation of one of the two
funtcions (==) and (/=) on the type T.

< Type Class: Ord

data Ordering = LT | EQ | GT

class (Eq a) => 0Ord a where

compare :: a -> a -> 0Ordering
(<)1 (<=)1 (>)1 (>=) :: a -> a -> BOO-L
max, min :ra->a ->a
compare x y = 1if x ==y then EQ

else if x <=y then LT

else GT
X < y = case compare x y of { LT -> True; _ -> False }
X <= y = case compare x y of { GT -> False; _ -> True }
X > y = case compare x y of { GT -> True; _ -> False }
X >= y = case compare x y of { LT -> False; _ -> True }
max x y = if x <= y then y else x
min x y = if x <= y then x else y

O 0Ord, as defined by the Haskell report, implements a total order,
and has the following properties:

B Comparability
X <=y || y<=x === True
B Transitivity
IF X <=y &y <=z === True THEN X <= z === True

B Reflexivity

X <= X === True
B Antisymmetry

IF x <=y &y <= x === True THEN x ==y === True

O The following operator interactions are expected to hold:

l.x >=y === y <=X

2.X <y === XxX<=y&&X /=Yy

3.x >y === y <X

4. X <y === compare X y == LT

5.x >y === compare x y == GT

6. x ==y === compare x y == EQ

7.min x y == if x <= y then x else y === True
8. max x y == if x >= y then x else y === True

O Minimal complete definition: compare | (<=)

< Type Class: Num
class Num a where

#), (), (% ::a->a->a

-- Unary negation.
negate :ra -> a

-- Absolute value.
abs i a -> a

-- Sign of a number.
signum o a -> a

-- Conversion from an Integer.
fromInteger :: Integer -> a

X -y = X + negate y
negate x = 0 - X

O The Haskell Report defines no laws for Num.
O However, (+) and (*) are customarily expected to define a ring

and have the following properties:

® Associativity of (+)

x+y)+z === x+ (y+ z)

® Commutativity of (+)

X +y === y + X

® fromInteger 0 1is the additive identity

X + fromInteger 0O === X

® negate gives the additive inverse

X + negate X === fromInteger O

® Associativity of (%)

(x *xy) * z === X * (y * z)

® fromInteger 1 1is the multiplicative identity

X * fromInteger 1

X

fromInteger 1 * X === X

® Distributivity of (%) with respect to (+)

a*x (b+c) === (a*xhb) + (a*c)

b+c)*a === (b *a)+ (c * a)

O Minimal complete definition:

(+) 1

ek 01

(), abs, signum, fromInteger, (negate |

What are the types of the following values?

O ['a',
O ('a',

|b|’ ICI]
|b|’ ICI)

O [(False, '0'), (True, '1")]
O ([False, Truel, ['0', '1']D)

O [tail, init, reversel]

(-))

fENV 02
What are the types of the following functions?
second xs = head (tail xs)

swap (x, y) = (y, x)

pair x y = (x, y)

X % 2

double x

palindrome xs = reverse Xxs == XS
twice £ x = £ (f x)

OO O O O O

fEML B3

FIEERHS, Ml (78 ghci Eizfr) &7 Int 5 Integer X HILL A show F
read ML,

YNV 04

FRIEEZRI A Prelude BEHc kY, FHAE Integral #1 Fractional P Type Class
thE LR EAEE %, BT (# ghcl FiE1T) BRE —wE/ s E &R,

