
第 04章：类型与类簇

	
	

² What is a type?

A type is a collection of related values.

For example, in Haskell the basic type Bool, contains two logical
values: True, and False.

² Type Errors / 类型错误

“Applying a function to one or more arguments of the wrong type”
is called a type error.

¡ 1 is a number, and False is a logical value
¡ but + requires two numbers

² Types in Haskell

If evaluating an expression e would produce a value of type T,
then e has type T, written

e :: T

Every well formed expression has a type, which can be
automatically calculated at compile time using a process called
type inference.

中英文对照：

¡ 类型 => type

¡ 类簇 => type class

 f :: A -> B, e :: A

 f e :: B

All type errors are found at compile time, which makes programs
safer and faster by removing the need for type checks at run time.

In GHCi, the :type command calculates the type of an expression,
without evaluating it.

² Basic Types in Haskell

¡ Bool

n logical values: True | False

n exported by Prelude

¡ Char

n an enumeration whose values represent Unicode code points
(i.e. characters, see http://www.unicode.org/ for details)	

n exported by Prelude

¡ String

n definition: type String = [Char]

n exported by Prelude

¡ Int

n fix-precision integer numbers. 	
n in GHC, the range of Int is [-2^63, 2^63-1] 	
n exported by Prelude

¡ Integer

n arbitrary-precision integer numbers	

n exported by Prelude

¡ Word

n fix-precision unsigned integer numbers	
n the same size with Int	
n exported by Prelude

¡ Natural

n arbitrary-precision unsigned integer numbers	

n exported by Numeric.Natural (a module in the base package)

¡ Float

n single-precision floating-point numbers	

n exported by Prelude

¡ Double

n double-precision floating-point numbers

n exported by Prelude

² List Types

A list is a sequence of values of the same type.

Given a type T:

[T] is the type of of lists with elements of type T

Notes:

¡ The type of a list says nothing about the list’s length.

¡ The type of the elements is unrestricted.

That is, for any type T, [T] is a type of lists.

For example, we can have lists of lists

² Function Types

A function is a mapping from values of one type to values of
another

Given two types X and Y:

 X -> Y is the type of functions that map values of X to values
of Y

Notes:

¡ The argument and result types are unrestricted

For example, functions with multiple arguments or results are
possible using lists or tuples.

add :: (Int, Int) -> Int	

add (x,y) = x + y

zeroto :: Int -> [Int]	

zeroto n = [0..n]

	

² Curried functions	

Functions with multiple arguments are also possible by returning
functions as results.

add :: (Int, Int) -> Int	

add (x, y) = x + y

add' :: Int -> Int -> Int	

add' x y = x + y

¡ add' takes an integer x and returns a function add' x 	

add' x takes an integer y and returns the result x + y

¡ add and add' produce the same final result

but add takes its two arguments at the same time,

whereas add' takes them one at a time

Functions that take their arguments one at a time

 are called curried functions,

 celebrating the work of Haskell Curry on such functions.

Functions with more than two arguments can be curried by returning
nested functions.

mult :: Int -> Int -> Int -> Int	

mult x y z = x * y * z

¡ mult x :: Int -> Int -> Int

¡ mult x y :: Int -> Int

¡ mult x y z :: Int

² Why is Currying Useful?	

Curried functions are more flexible than functions on tuples.

Useful functions can often be made by partially applying a curried
function.

For example:

¡ add' 1 :: Int -> Int	

¡ take 5 :: [Int] -> [Int]

¡ drop 5 :: [Int] -> [Int]

	

² Currying Conventions

The arrow -> associates to the right.

 Int -> Int -> Int -> Int === Int -> (Int -> (Int -> Int))

As a consequence, it is then natural for function application to
associate to the left.

 mult x y z === ((mult x) y) z

Unless tupling is explicitly required,

 all functions in Haskell are normally defined in curried form.

² Polymorphic Functions	

A function is called polymorphic (“of many forms”)

 if its type contains one or more type variables.

length :: [a] -> Int

¡ For any type a,

length takes a value of type [a], and returns a value of type
Int

Type variables can be instantiated to different types in different
circumstances:

¡ in length [True, False, True], a is instantiated to Bool

¡ in length [0, 1, 1, 2], a is instantiated to Int

Type variables must begin with a lower-case letter, and are
usually named a, b, c, etc.

² Polymorphic Functions in Prelude : examples	

fst :: (a, b) -> a

¡ Extract the fist component of a pair

snd :: (a, b) -> b

¡ Extract the second component of a pair

curry :: ((a, b) -> c) -> a -> b -> c

¡ Convert an uncurried function to a curried function

¡ Example:

 curry fst 1 2 === 1

head :: [a] -> a

¡ Extract the first element of a list, which must be non-emmpty

¡ Example:

 head [1, 2, 3] === 1

 head [1..] === 1

 head [] throws an exception: Prelude.head: empty list

last :: [a] -> a

¡ Extract the last element of a list, which must be finite and
non-empty

¡ Example:

 last [1, 2, 3] === 3

 last [1..] hangs forever

 last [] throws an exception: Prelude.last: empty list

² Overloaded Functions	

A polymorphic function is called overloaded,

 if its type contains one or more type class constraints.

¡ For any type a that is an instance of type class Num,

(+) takes two values of type a and returns a value of type a.

Constrained type variables can be instantiated to any types that
satisfy the constraints:

¡ The error above is caused by the fact that

 the type Char is not an instance of type class Num.

² Type Class	

Prelude exports many type classes, for example:

¡ Eq / Ord / Num

These type classes appear in many types of functions:

² Type Class: Eq

class Eq a where	
 (==), (/=) :: a -> a -> Bool	
 x /= y = not (x == y)	
 x == y = not (x /= y)

¡ The above is the definiton of type class Eq

¡ The Eq class defines equality (==) and inequality (/=)

¡ All basic datatypes exported by Prelude are instances of Eq

¡ Eq may be derived for any datatype whose constituents are also
instances of Eq.

¡ The Haskell Report defines no laws for Eq

¡ However, instances are encouraged to satisfy the following
properties:

n Reflexivity / 自反性

x == x === True

n Symmetry / 对称性

x == y === y == x

n Transitivity / 传递性

IF x == y && y == z === True THEN x == z === True

n Extensionality / 外延性

IF x == y === True && f is a function whose return type

is an instance of Eq THEN f x == f y === True

n Negation

x /= y === not (x == y)

¡ Minimal complete definition: (==) | (/=)

If you want to make a type T an instance of Eq,

you can only provide an implementation of one of the two
funtcions (==) and (/=) on the type T.

² Type Class: Ord

data Ordering = LT | EQ | GT

class (Eq a) => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>), (>=) :: a -> a -> Bool
 max, min :: a -> a -> a

 compare x y = if x == y then EQ
 else if x <= y then LT
 else GT

 x < y = case compare x y of { LT -> True; _ -> False }
 x <= y = case compare x y of { GT -> False; _ -> True }
 x > y = case compare x y of { GT -> True; _ -> False }
 x >= y = case compare x y of { LT -> False; _ -> True }

 max x y = if x <= y then y else x
 min x y = if x <= y then x else y

¡ Ord, as defined by the Haskell report, implements a total order,
and has the following properties:

n Comparability

x <= y || y <= x === True

n Transitivity

IF x <= y && y <= z === True THEN x <= z === True

n Reflexivity

x <= x === True

n Antisymmetry

IF x <= y && y <= x === True THEN x == y === True

¡ The following operator interactions are expected to hold:

1. x >= y === y <= x

2. x < y === x <= y && x /= y

3. x > y === y < x

4. x < y === compare x y == LT

5. x > y === compare x y == GT

6. x == y === compare x y == EQ

7. min x y == if x <= y then x else y === True

8. max x y == if x >= y then x else y === True

¡ Minimal complete definition: compare | (<=)

² Type Class: Num

class Num a where	
 (+), (-), (*) :: a -> a -> a
	
 -- Unary negation.	
 negate :: a -> a
	
 -- Absolute value.	
 abs :: a -> a
	
 -- Sign of a number.	
 signum :: a -> a
	
 -- Conversion from an Integer.	
 fromInteger :: Integer -> a	
	
 x - y = x + negate y	
 negate x = 0 - x

¡ The Haskell Report defines no laws for Num.
¡ However, (+) and (*) are customarily expected to define a ring

and have the following properties:

l Associativity of (+)

(x + y) + z === x + (y + z)

l Commutativity of (+)

x + y === y + x

l fromInteger 0 is the additive identity

x + fromInteger 0 === x

l negate gives the additive inverse

x + negate x === fromInteger 0

l Associativity of (*)

(x * y) * z === x * (y * z)

l fromInteger 1 is the multiplicative identity

x * fromInteger 1 === x

fromInteger 1 * x === x

l Distributivity of (*) with respect to (+)

a * (b + c) === (a * b) + (a * c)

(b + c) * a === (b * a) + (c * a)

¡ Minimal complete definition:

(+), (*), abs, signum, fromInteger, (negate | (-))

	

作业 01

What are the types of the following values?

¡ ['a', 'b', 'c']

¡ ('a', 'b', 'c')

¡ [(False, '0'), (True, '1')]

¡ ([False, True], ['0', '1'])

¡ [tail, init, reverse]

	

	

	

作业 02

What are the types of the following functions?

¡ second xs = head (tail xs)

¡ swap (x, y) = (y, x)

¡ pair x y = (x, y)

¡ double x = x * 2

¡ palindrome xs = reverse xs == xs	
¡ twice f x = f (f x)

作业 03

阅读教科书，用例子 (在 ghci上运行) 展示 Int与 Integer的区别以及 show和
read的用法。

作业 04

阅读教科书和 Prelude模块文档，理解 Integral和 Fractional两个 Type Class
中定义的函数和运算符，用例子 (在 ghci上运行) 展示每一函数/运算符的用法。

